
ROS Rescue : Fault Tolerance System for Robot
Operating System

Pushyami Kaveti, Hanumant Singh

Northeastern University, Boston, MA 02130
kaveti.p@husky.neu.edu

ha.singh@northeastern.edu

https://www.northeastern.edu/robotics

Abstract. In this chapter we discuss the problem of master failure in
ROS1.0 and its impact on robotic deployments in the real world. We
address this issue in this tutorial chapter where we outline, design and
demonstrate a fault tolerant mechanism associated with ROS master
failure. Unlike previous solutions which use primary backup replication
and external checkpointing libraries which are process heavy, our mech-
anism adds a lightweight functionality to the ROS master to enable it to
recover from failure.
We present a modified version of ROS master which is equipped with a
logging mechanism to record the meta information and network state of
ROS nodes as well as a recovery mechanism to go back to the previous
state without having to abort or restart all the nodes. We also implement
an additional master monitor node responsible for failure detection on
the master by polling it for its availability. Our code is implemented in
python and preliminary tests were conducted successfully on a variety
of land, aerial and underwater robots and a tele-operating computer
running ROS Kinetic on Ubuntu 16.04. The code is publicly available
under a creative commons license on github at https://github.com/

PushyamiKaveti/fault-tolerant-ros-master.

Keywords: ROS1.0 , Fault-tolerance, Failure detection, master recov-
ery

1 Introduction

The Robot Operating System (ROS)[8] is the most widely used framework [3]
that provides libraries and tools to create robotic applications. It allows us to
build and execute distributed applications across multiple machines within the
context of a publish/subscribe master-slave architecture. ROS supports both
synchronous communication via services and asynchronous communication via
publish/subscribe. It maintains a peer to peer runtime graph of processes com-
municating via XMLRPC.

The ROS master has a unique place in the ROS architecture. It acts as a
central authority for the nodes to setup communication links with each other.



2 Pushyami Kaveti, Hanumant Singh

This uniqueness is a major issue as the system is prone to a single point of failure
when the ROS master crashes. Even though a ROS master crashing may be a
very low probability event, a requirement for resiliency to faults is critical for
implementing real world robotics applications.

We have experienced ROS master crashes in the environments that we focus
on - long deployments on missions in challenging environments with extremes of
temperature and adverse environmental conditions as are found in underwater
robotic applications and in ice/snow covered areas. Battery limitations in case of
high power consumption on Unmanned Aerial Systems (UAS or drones), software
failures associated with memory or processing overload can also be contributing
factors. The impact of failure may be dramatic and catastrophic leading to the
loss of the robot, property damage and possible human injury or death when
dealing with mission critical systems on large robotic systems such as unmanned
aerial systems and autonomous cars. Thus, it is extremely important to detect
and recover from such failures, and to do so quickly and without the need to
abort or reboot the mission entirely.

1.1 Related work

There have been previous attempts towards fault tolerance in ROS [7][6]. Both
these cases propose a transparent approach where there is a separation between
functional code and the fault tolerance mechanism.

Lauer et al [7], propose an adaptive fault-tolerance technique related to a
component based approach. Their design to fault-tolerance uses primary-backup
replication and the introduction of, before-proceed-after, interceptor nodes be-
tween the clients (ROS nodes) and the master. A back-up replica of the ROS
master is maintained to tolerate faults associated with crashes. A request to
the master is first handled by a proxy server which is then passed on to the
before-proceed-after nodes. Once it passes through the after node, the backup
replica is updated to match the primary. There is a crash detector node on the
master which periodically reports masters status to the crash detector on the
slave. There is also a recovery node which is notified in the event of a primary
crash to stop and remove all nodes from master and bind them to the slave after
which all the client requests are forwarded to the slave.

They provide a nice component-based extensible design and show how mul-
tiple fault-tolerant mechanisms can be introduced into the computation graph.
A strong feature of this approach is high availability of the ROS master, but
it comes with the cost of adding an extra layer of communications between the
nodes and the master.

Although this approach shows promise, the results for a ROS implementation,
as reported by the authors themselves, were not satisfactory. Unfortunately,
neither the source code nor the results of any experiments that were conducted
with the proposed FTM in ROS are available for us to do a comparative study
against our method.

Another approach by Jain et al[6] uses DMTCP checkpointing [4] software
to deal with the single point of failure of ROS master. DMTCP checkpointing is



ROS Rescue : Fault Tolerance System for Robot Operating System 3

a multi threaded program which works by taking a snapshot of the application
state which can be used later to restart the application from checkpoint. It is
mainly designed for long running applications on a large cluster, where if the
program crashes at the last minute, it needs to be started from the beginning.

In the DMTCP checkpointing [4] method an application snapshot which con-
sists of the user space, the libraries, the processor state etc., are all saved. This
is useful in case of long running applications where the entire application state
needs to be recovered to continue processing. In ROS, the master acts as a service
registry, where recovering just the meta-data is sufficient.

Also, DMTCP works by spawning a DMTCP coordinator thread and one
checkpointing thread per node which adds additional load on the processor. It
saves one checkpointing image file per node. The checkpointing files are com-
paratively large in size, about 16MB for a simple string publisher node. This
is due to the fact that the checkpoint contains the snapshot of the application
state including the libraries, memory contents etc. This limits the scalability of
this method. In addition, since, DMTCP is a separate application from ROS
it needs to checkpoint periodically, each time suspending the nodes, saving the
checkpoint and only then resuming the operation. This would entail a severe
limitation for usage in robotics applications in highly dynamic environments.

In the adaptive fault-tolerance solution, a replica master is maintained which
replaces the primary in case of a failure. While this provides high availability
of the ROS master, it adds the overhead of dynamic binding (unregistering/re-
registering) all the nodes to the replica and vice versa for the case when the
master is recovered. It also requires a suspension of all the nodes when changing
the bindings to the new master.

For DMTCP, we note that this case is quite different from that of ROS, where
the master acts as a service registry. This implies that ROS can be restarted at
any point without running the entire program from the beginning. Saving its
meta-data is sufficient for recovery and for re-establishing connections between
nodes. No experimental evaluation of using DMTCP with ROS is provided in
the paper to understand its applicability.

Fig. 1. ROS is the dominant software framework [8] used in variety of robotic plat-
forms including aerial systems, autonomous driving and underwater & surface vehicles.
The requirement for a ROS master can be a critical point of failure, albeit with low
probability. We propose a very lightweight method that addresses this issue.



4 Pushyami Kaveti, Hanumant Singh

In contrast to these methods, our work presents a simple and light-weight
fault-tolerance mechanism as an added functionality within the ROS framework.
We solve the problem of fault tolerance by maintaining the state of ROS master
and its nodes via a logging mechanism. This not only helps us to store the meta
information of the system but also helps us to recover the system state after a
failure. It is simple as it is just a feature addition to ROS. It is light-weight in
so far as we are only recording the meta-data and when there is a change to the
configuration as opposed to periodic checkpointing. We believe our ROS Rescue
is a very useful feature to have in ROS for carrying out real-world robotics
missions/applications safely and without interruptions. A strong fundamental
requirement for our work was to enable ROS master recovery in a fraction of
a second, a number determined by the tolerance of our robotic systems in real
world applications. The main contributions of this chapter include software for
ROS master with fault tolerance, and a detailed step by step tutorial on how to
obtain, build and use ROS Rescue into standard applications while meeting our
fundamental requirement.

In the coming sections of the chapter we discuss the following topics as they
relate to our problem and its implementation

– Section 2 covers an overview of the structure and various components of
ROS.

– Section 3 describes the impact of master failure and need for fault tolerance
in ROS.

– Section 4 covers fault tolerance using our package which we call ROS Rescue.
– Section 5 covers the implementation details of our fault tolerance technique

and a step by step guide to install and use ROS rescue from an applications
standpoint.

2 ROS Overview & Architecture

An overview of ROS framework is shown in the Figure 2 below. The main tech-
nical components include a ROS master, a parameter server and ROS nodes.
Each of these components implement an XMLRPC server for communication.

As a peer to peer topology ROS requires some sort of look up service like
a DNS server so that processes can find each other. The ROS master facili-
tates this and acts as the registration and lookup service which maintains a
registration API for nodes to register with it as publishers, subscribers or ser-
vice providers. The ROS master has a URI stored in the environment variable
ROS MASTER URI on which the XMLRPC server is running.

Every node is essentially an XMLRPC server and has a URI. This server is
used to receive call backs from the master and negotiate connections with other
nodes via a slave API. Nodes communicate with each other asynchronously using
topics via a publish/subscribe mechanism, and synchronously via service calls.

A subscriber node connects with the master on startup. The master saves the
information about the subscriptions and sends the publisher information which
contains the subscribed topic names and the list of URIs of the nodes that



ROS Rescue : Fault Tolerance System for Robot Operating System 5

Fig. 2. The ROS software architecture in current state

publish those topics. The master also sends the updated publisher list to the
subscriber in case of a change. After receiving publisher updates, the subscriber
node will connect to any new publishers by requesting a topic connection using
the publishers XMLRPC server. The nodes then communicate with each other
on an agreed protocol (TCPROS or UDPROS).

Similarly, a publisher node establishes connection with the master first which
saves the information about the advertised topics and relays it to the subscribers.
Publisher then receives calls from the nodes looking for topic connections for sub-
scription. The topics are transported using libraries called TCPROS or UDPROS
depending on the protocol.

In case of services, a node providing that service registers with the master.
A client node requesting that service contacts the master and looks up the in-
formation. It then makes a serialized request call and gets the response from
the service. In case of services there is no callback on the master which informs
the clients about any changes. Thus, the clients poll and wait for the service to
appear.

In addition to the above mentioned components there is a parameter server,
which is a shared global dictionary consisting of the configuration parameters.
The parameter server runs inside the ROS master and nodes can access and
modify these parameters via remote procedure calls to the ROS master.

Thus, we can see that the master is an important entity which facilitates the
communication between various nodes and stores the configuration state of the
runtime graph of a ROS network. Hence, it is crucial to keep the master up and
running for system integrity.



6 Pushyami Kaveti, Hanumant Singh

3 Fault tolerance in ROS

The ROS architecture described above is characterized by single point of failure
with an inadvertent loss of the ROS master. The master is the central server
which keeps the metadata about all the nodes. The metadata is the information
regarding the publisher nodes and subscriber nodes, their URIs, services and
configuration parameters in parameter server. Every node on startup communi-
cates with the master and registers itself. When the master fails this metadata
is lost and the system is left with no way of connecting nodes. As it is a peer
to peer system, nodes which are already connected still communicate. But, the
problem arises when a new node comes up or goes down or an existing node
makes a service call; the nodes need to contact the master for metadata infor-
mation in these cases. Without recovering the lost metadata nodes are forced to
restart even after master comes back alive and the system is reinitialized.

Consider a scenario with a publisher and a subscriber node. As explained in
the previous section, after they register with master they communicate with each
other directly. Now if the master crashes the nodes still talk to each other over
the topic. However they cannot make any new connections or publish/subscribe
new topics. When the master recovers, it starts afresh and does not have the
knowledge of the current system state. This leaves the nodes hanging and isolated
from any other nodes that may come up after reinitialization.

At present there is no logging or checkpointing mechanism in ROS to record
the master metadata so that we can recover the last uncorrupted state.

3.1 Importance of Fault Tolerance in robotics

Fault tolerance is a crucial property to have when implementing real time ap-
plications, especially in the field of robotics where the systems are highly prone
to failures. There can be physical failures due to long deployments of missions
in challenging environments such as at disaster areas or construction sites and
in harsh conditions such as is the case for robotics underwater, under-ice or in
polar regions. There are additional issues such as battery limitations and power
consumption, software failures including those associated with memory or pro-
cessing overload. Moreover, in robotics the impact of a failure can have serious
consequences including loss of the robot, property and lives. Due to the active
and dynamic nature of these systems, the time to recovery is a critical factor.
However, the time to recovery from failure depends on the type of robot, the
underlying computing hardware and reaction time of sensors and/or actuators,
all of which vary with the type of robot and its application area.

The main goal of this chapter is to provide an implementation of a fault tol-
erant mechanism in ROS, which is the most widely used software framework [8]
for building robotics applications both in academia and industry in order to fa-
cilitate scalable and reliable robotic systems. In the following sections, we lay out
our method including the logging and recovery solution, and its implementation.



ROS Rescue : Fault Tolerance System for Robot Operating System 7

4 ROS Rescue

We have designed, developed and tested our software which we call ROS Rescue,
that deals with the two related problems of system failure detection and recovery.
The fundamental idea is to equip the ROS master with a logging mechanism to
save its state to persistent memory whenever there is a change to its metadata.
When the master recovers from failure it can return to the previous working
state by reading the log. The log contains the complete metadata information
about various nodes including URIs, port numbers, published/subscribed topics
and services, and the parameters in the parameter server. After recovering the
working state, the master can resume its operation.

We developed our approach to be as simple and light weight as possible and
at the same time keep it suitable for robotics applications.

Our solution is a simple feature addition to ROS master as opposed to
running another multi-threaded application or having interceptor nodes and a
replica master. We save only the meta-data as a log file as opposed to the ap-
plication snapshot consuming less space. We log if and when a change occurs
to the ROS master instead of periodically saving a checkpoint. And, we are not
suspending the nodes when we are writing to persistent disk, in fact this can be
parallely done using a writing thread for complete separation. Finally, we can
recover the configuration by just restarting the master while all the other nodes
are active unlike the checkpoint recovery using DMTCP.

The architectural changes to the original ROS framework can be visually
depicted as shown below in Figure 3. The important aspects of the fault tolerance
mechanism are:

Fig. 3. ROS Software architecture with fault-tolerance. In comparison to Figure 2
note the addition of ROSRESCUE inside ROSCORE along with an associated logging
mechanism



8 Pushyami Kaveti, Hanumant Singh

1. Failure detection by continuous monitoring of the ROS master.
2. Detecting changes in the network configuration and continuous update of

meta information to persistent memory.
3. Recovery of the most recent state after master crash and updates to the

state to reflect the network configuration in a timely manner.
4. The code simply provides added functionality, while all the key components,

their functions, and APIs, otherwise remain the same within ROS. There is
no overhead associated with external libraries.

5. The software is lightweight and is a simple implementation when compared
to previously proposed solutions.

4.1 Implementation Details

The architecture of ROS is very similar to that of the google file system (GFS)
[5] where there is a single master which saves the meta information and chunk
servers which host the data. When needed the clients and chunk-servers establish
connections after contacting master for look up information. The implementation
of logging and recovery mechanism is inspired from GFS , but we record the
latest state of the master as opposed to an operational log which needs to be
replayed for recovery. In case of GFS an operational log is maintained not just for
metadata but also to record the logical timeline of the concurrent operations on
the data and maintain version information. In case of ROS, this is not necessary
as it is not a database or filesystem but a framework of processes which only
needs the information about about process communication. The fault tolerance
is implemented in two stages

Failure detection A master discovery node is implemented which keeps track
of the availability of the master. It starts up with the master and detects master
failure using a pull design by periodically polling the master node. Finding the
master state is done by repeatedly making a XMLRPC function call to the
master server. When it detects that the master has not responded for a specified
number of polls it declares that the master has failed and issues command to
restart the master.

Recovery master logging and recovery is implemented inside the ROS Res-
cue process which exists within the master and can be activated by passing a
command line argument to the rosmaster startup script. Once this feature is
enabled ROS Rescue repeatedly logs the metadata information of master onto
persistent disk whenever it changes. This change can happen when a new node
registers/unregisters itself with the master, a node crashes or stops, when a new
topic is published or subscribed to, or changes are made to parameter server.
When the master recovers from failure it restores its last seen state by reading
the log. It then checks to see if there are any changes to the recovered state.
For example, some nodes might have crashed while the master is down but their
information will be present in the log. Hence, master goes through each node and



ROS Rescue : Fault Tolerance System for Robot Operating System 9

makes sure that they exist and their metadata remains consistent. If there are
any changes it updates its state and re-establishes connections with the nodes
that are running.

Fig. 4. Process flow diagram of the Fault tolerance mechanism

4.2 Logging meta-data

As mentioned in the previous section the state of the ROS runtime graph is
written to a log whenever there is a change. ROS master maintains the infor-
mation about publishers, subscribers and the available services in the form of
dictionaries. The structure of the log that is written to disk is maintained in a
manner similar to the way it is stored in the ROS master for easier recovery.
The yaml format is a natural choice to save the metadata of ROS master and
the written log has the structure shown in Figure 5 and illustrated for a real
process with all its complexity in Figure 7.



10 Pushyami Kaveti, Hanumant Singh

Fig. 5. Log file structure. Our log file is in YAML format and contains all the metadata
associated with the ROS master. In comparison to this simple illustration, we have also
included the partial contents of an actual log file in Figure 7.

4.3 Testing

The following cases are considered for testing the implemented fault tolerance
and recovery mechanism.

Case 0 -Master failure and no configuration changes: Fault tolerance mech-
anism in this case is demonstrated by spawning three nodes - ROS master, a
publisher node advertising a topic and a subscriber listening to the same topic.
We can then abruptly crash the master and upon restart the master should be
able to get back its previous state and ready to connect new nodes. We can check
this by:

1. Inspecting the meta data and the configuration parameters
2. Spawning a new subscriber to the topic advertised by the publisher before

the crash and checking on recovery, to ensure that the subscription was
successful.



ROS Rescue : Fault Tolerance System for Robot Operating System 11

Case 1 - Master failure and node configuration changes: This case is demon-
strated similar to case 0, but now we crash one of the nodes while the master is
down. Upon restart, the master should not only recover it last seen state, but
also update the latest node configuration changes. This can be tested in a way
similar to the last case.

Case 2 - Master failure during the registration process: By default ROS deals
with this issue as typically a node keeps trying periodically to see if the master is
available during the registration process. However, there can be a situation where
the master crashes after it unregisters a node with itself, but before it can let
other nodes know about the change. This case is currently not being handled in
the code although we are working on the implementation. Our method would go
through the topics published by the nodes and notify subscribers that are alive
but are not privy to this information as observed in there registration data.

Case 3 - Master failure while writing to persistent disk: If the master fails
while it is saving the state it is important to save either the entire meta-data
or none at all to avoid inconsistent state recovery. We have implemented a two
stage commit for saving the system state. Whenever the master saves the state,
it writes to a temporary checkpoint file which will be later renamed as the latest
checkpoint upon successful write. That way, if the master dies/crashes while
writing the state it will be in the temporary file and we can still recover the last
fully saved state from the old checkpoint.

All the above mentioned cases have been tested using ROS Rescue and in each
case we were able to recover the meta-data of the ROS runtime graph. In order
to evaluate the effectiveness of our fault-tolerant approach we also performed
quantitative analysis in terms of time taken for master recovery for a varying
number of nodes and on different robotic systems. The first set of experiments
was conducted on a Ubuntu 16.04, amd64 desktop where the ROS master was run
with and without the rescue option. For each test, we spawned a set of n nodes
(both publishers and subscribers), killed the master and brought it back up. We
recorded the time taken for recovering the saved state from the log file. This
test was performed multiple times for each value and the results averaged. The
final averaged results are tabulated in Table 1. We can see that time to recovery
changes linearly with the number of nodes. We also compare these results with
a vanilla version of ROS (that is ROS without ROS Rescue compiled in).

We have successfully tested and have actively been using ROS rescue on
multiple robotic platforms including the turtlebot3 [9], DJI matrice M100[2] and
a Lincoln MKZ autonomous car equipped with the drive-by-wire ADAS kit from
Dataspeed Inc[1]. These robotic platforms use the Raspberry PI, Nvidia Tx2 and
an Intel Xeon processor (running Ubuntu) respectively. We have tabulated the
results of these experiments in Table 2. For each robot we include the average
number of nodes while running, the average time taken for ROS master recovery
and the start time for ROS with and without rescue option. We can see that
the recovery time is different on different platforms, and unlike Table 2, is not
linear. We note that this is to be expected as in these cases, the computational
burden on the differing underlying computer hardware is different. However, in



12 Pushyami Kaveti, Hanumant Singh

each case the time to recovery is well under a second which was our required
figure of merit based on the dynamic constraints for these robotic systems.

Table 1. ROS Rescue experimental results showing the total time taken to start the
master and time taken to recover the master in ROS with and without ROS Rescue.

Time to
recovery

Total time to
start master

Vanilla ROS N/A 0.0579s

ROS Rescue 1 node 0.00512s 0.0638s

ROS Rescue 5 nodes 0.0593s 0.1173s

ROS Rescue 10 nodes 0.112s 0.175s

ROS Rescue 20 nodes 0.218s 0.276s

ROS Rescue 40 nodes 0.436s 0.499s

ROS Rescue 80 nodes 0.9s 0.97s

Table 2. Experimental results on real robotic platforms - turtlebot3, DJI matrice
M100 drone and autonomous car showing the average time taken to recover the master
state and total time to start the master with and without ROS Rescue for a typical
application. As explained in the text the results are not linear with the number of
nodes due to different underlying computer hardware. However, full recovery is well
within the sub second figure of merit.

Vanilla ROS
Avg time to
start master

Avg time to
recover

Turtlebot3 (7∼10 nodes) 0.23s 0.62s 0.36s

Drone (15-20 nodes) 0.12s 0.45s 0.35s

Autonomous Car (20-25 nodes) 0.057s 0.33s 0.27s

5 Step-by-step guide to ROS Rescue

This section provides the necessary guidelines for building, testing and imple-
menting ROS Rescue in custom ROS applications.

5.1 System setup

Ros Rescue is included as an additional functionality inside the rosmaster pack-
age for light-weight implementation. We have implemented the rescue feature in
the bare bones source code of ROS which is available on github at the repository
shown below.



ROS Rescue : Fault Tolerance System for Robot Operating System 13

https://github.com/PushyamiKaveti/fault-tolerant-ros-master.git

We need to prepare the system to execute roscore with rescue feature en-
abled , as a first step we make sure to have the prerequisites. Open the terminal
and execute the following commands which take cares of python dependencies,
initialize the ROS dependencies and update the ROS dependency packages.

$ sudo apt -get install python -rosdep python -rosinstall -

generator python -wstool python -rosinstall build -essential

$ sudo rosdep init

$ rosdep update

To use ROS Rescue the code needs to be built from source. Open terminal
and navigate to the folder of your choice and clone the git repository mentioned
above

$ git clone https :// github.com/PushyamiKaveti/fault -tolerant -

ros -master.git

Now, issue the following commands in the terminal. This will build the code
locally in the current folder and run ROS with the fault tolerant feature enabled.

$ cd fault -tolerant -ros -master

$ ./src/catkin/bin/catkin_make_isolated --install -

DCMAKE_BUILD_TYPE=Release

Open the ros env setup.sh file present in the fault-tolerant-ros-master folder
in a text editor. Find and replace all <your path folder>with the your local
path. For example, if you have cloned our repository in home folder then the
<your path folder>will be replaced as “ ˜/fault-tolerant-ros-master” the abso-
lute path of the file location.

Also, the environment setup file has the list of environment variables which
are required for execution. Sourcing the file will keep the current shell aware
of the environment variables. If you want to utilize the ROS for other users in
the system, place the copy of the file in /etc/profile.d/ros env setup.sh. This as-
sumes you are running ROS on a linux/unix platform. This will facilitate loading
the file globally for all users in the system during login/shell spawning.

$ source ros_env_setup.sh

The system setup instructions are needed to build ROS Rescue from source
for immediate use. However, we plan to limit the ROS Rescue functionality only



14 Pushyami Kaveti, Hanumant Singh

to rosmaster package and make a pull request to ROS’s offical github repository.
Once approved the Rescue functionality will be available in official ROS packages
and one can skip to section 5.2 for running ROS with rescue option.

5.2 Running ROS Rescue

Once the environment is setup as outlined above we can run roscore with the
rescue feature enabled. ROS master with our rescue option will function and
operate as normal with the additional capabilities associated with logging and
rescue. The only change is to initiate the roscore with “–rescue” option as shown
below. Before running roscore it is advisable to ensure that the correct version
of roscore is being called by issuing the “which roscore” command in the terminal.

$ roscore --rescue

By default logs are saved in “˜/.ros/log/latest-chkpt.yaml” with the system
defaults umask value which enables everyone to read the logs. To keep the logs
locked or to avoid manual intervention you can set the file permission to ‘655’.
Owner can read and write, others can only read and execute by “chmod 655
˜/.ros/log/latest-chkpt.yaml”. This will help us keep the master state secure
and stable.

If the ROS master is running with fault tolerance enabled you should see
“ROS Rescue enabled. Master is now fault tolerant!!” printed to the console
where roscore –rescue was executed as shown in the Figure 6. Another check that
can be done is to make sure the master state is being saved to latest-ckhpt.yaml
file mentioned above.

ROS Rescue package also comes with a master discovery node to detect
master failure. Master monitoring is required for failure detection and master
restart. This node is made a part of roscore.xml file alongside rosout node and
is launched when roscore command is issued. We can also run it separately by
issuing the following commands.

$ cd src/ros_comm/rosmaster/scripts/

$ ./ master_monitor --rescue

To make sure ROS Rescue logging is working correctly we can run a simple
publisher/subscribe test as shown below.

$ cd src/node_test/scripts/

$ python talker.py

$ python listener.py



ROS Rescue : Fault Tolerance System for Robot Operating System 15

Fig. 6. Console output of roscore with fault tolerance enabled

The talker node publishes a dummy string message to a topic called /chatter.
The listener node subscribes to that string message on topic /chatter. If every-
thing is working well the messages published by publisher in its console should
relay on subscriber console. The log file should now contain the information
about the nodes, publishers, subscribers and services available. Figure. 7 below
shows a small portion of a log file that was created with ROS Rescue enabled
when talker and listener nodes were running.

6 Conclusion and Future work

As part of this project a failure detection and recovery mechanism has been
implemented for Robot Operating System 1.0 (ROS). The implemented code
has been tested successfully on custom publisher and subscriber nodes as well
as on a real robot systems. We also conducted tests and used ROS Rescue on
a turtlebot3, an autonomous car and on drones. The logging mechanism has
implemented for publishers, subscribers, services and the parameter server. We
have made our code and demo videos available on the project’s github repository
for use by researchers and developers in the ROS community as they see fit.
As mentioned earlier we plan to limit ROS Rescue functionality to rosmaster
package and make a pull request to the official ROS repository for integration
and porting across multiple versions. As an extension to this work we are in
the process of conducting testing to cover cases of highly dynamic and scalable
environments, including for a multi-robot swarm system.



16 Pushyami Kaveti, Hanumant Singh

Fig. 7. Screenshot of an actual run showing the latest-chkpt.yaml created with fault
tolerance enabled

7 Authors Biographies

Pushyami Kaveti is now a Ph.D. student at the Khoury College of Computer
Sciences at Northeastern University . She received her M.S. degree in Computer
Science in 2014 at University of Florida , and B.Tech degree in Computer Sci-
ence and Engineering from JNTU, India in 2011. Her research interests lie at
the intersection of robotics, computer vision and machine learning. Her work at
Field Robotics Laboratory focuses on robot perception and navigation in real
world and dynamic environments.

Hanumant Singh is professor in the department of ECE at Northeastern
University and the Director of the Center for Robotics there. He received his
Ph.D. from the MIT/WHOI Joint Program in 1995 after which he worked on
the Staff at WHOI until 2016 when he joined Northeastern. Prior to that, he



ROS Rescue : Fault Tolerance System for Robot Operating System 17

graduated with dual degrees in Computer Science and Electrical and Computer
Engineering from George Mason University. While at WHOI, his group designed
and built the Seabed AUV, as well as the Jetyak Autonomous Surface Vehicle,
dozens of which are in use for scientific and other purposes across the globe. His
interests lie in the area of Marine, Land and Aerial robotics especially as they
relate to sensing, imaging and navigation.

References

1. Dataspeed inc drive-by-wire adas kit, https://bitbucket.org/DataspeedInc/dbw_
mkz_simulation/src/default

2. Dji matrice m100 quadcopter for developers, https://www.dji.com/matrice100
3. The rise of the robot operating system, https://roboticsandautomationnews.com/

2019/05/16/the-rise-of-the-robot-operating-system/22485/

4. Ansel, J., Arya, K., Cooperman, G.: DMTCP: Transparent checkpointing for
cluster computations and the desktop. In: IPDPS 2009 - Proceedings of the
2009 IEEE International Parallel and Distributed Processing Symposium (2009).
https://doi.org/10.1109/IPDPS.2009.5161063

5. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. In: Operating Sys-
tems Review (ACM) (2003). https://doi.org/10.1145/1165389.945450

6. Jain, T., Cooperman, G.: Dmtcp: Fixing the single point of failure of the ros master
(2017)

7. Lauer, M., Amy, M., Fabre, J.C., Roy, M., Excoffon, W., Stoicescu, M.: Resilient
computing on ros using adaptive fault tolerance. Journal of Software: Evolution and
Process 30(3), e1917 (2018)

8. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng,
A.Y.: ROS: an open-source Robot Operating System. In: ICRA workshop on open
source software (2009)

9. Yoonseok, P., Leon, J.: Turtlebot3 (2016)


